Nanoclusters Synthesized by Synchrotron Radiolysis in Concert with Wet Chemistry

نویسندگان

  • Hiroyuki Oyanagi
  • Yuuichi Orimoto
  • Kuniko Hayakawa
  • Keisuke Hatada
  • Zhihu Sun
  • Ling Zhang
  • Kenichi Yamashita
  • Hiroyuki Nakamura
  • Masato Uehara
  • Atsuyuki Fukano
  • Hideaki Maeda
چکیده

Wet chemical reduction of metal ions, a common strategy for synthesizing metal nanoparticles, strongly depends on the electric potential of the metal, and its applications to late transition metal clusters have been limited to special cases. Here, we describe copper nanoclusters grown by synchrotron radiolysis in concert with wet chemistry. The local structure of copper aggregates grown by reducing Cu(II) pentanedionate using synchrotron x-ray beam was studied in situ by x-ray absorption spectroscopy. A detailed analysis of the XANES and EXAFS spectra, compared with DFT calculations and full-potential non-muffin-tin multiple scattering calculations, identified the nanocluster as Cu13 with icosahedral symmetry. The novel "charged" nanoclusters tightly bound to electron-donating amido molecules, which formed as a result of photo-induced deprotonation of ligand amines, were stabilized by irradiation. Monodispersive deposition of nanoclusters was enabled by controlling the type and density of "monomers", in remarkable contrast to the conventional growth of metallic nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photovoltaic Performance of Dye-Sensitized Solar Cell (DSSC) Fabricated by Silver Nanoclusters-Decorated TiO2 Electrode via Photochemical Reduction Technique

In this investigation, Ag@TiO2 nanocomposite was prepared by deposition of silver nanoclusters onto commercial TiO2 nanoparticles (known as P25 TiO2) via photodeposition technique as clean and simple photochemical route. The synthesized Ag@TiO2 nanocomposite was utilized in the fabrication of dye-sensitized solar cell (DSSC) chiefly because, compared ...

متن کامل

Investigation of Structural and Optoelectronic Properties of Sc2O3 Nanoclusters: A DFT Study

In this manuscript, density functional theory was used to explore structural, vibrational and optical properties of the (Sc2O3)n (n=1-5) cluster systems using DFT/B3LYP/LanL2DZ level of computation. Different stable isomers were obtained and numerous chemical parameters such as HOMO-LUMO gap, ionization potential and electron affinity were calculated successfully. Stability of the clusters was ...

متن کامل

Water radiolysis by gamma –irradiation for high quality synthesis of Nickel Oxide nano sheet

A simple, time effective and cost effective, methos was reported for synthesis of nickel oxide nanostructure. The NiO nanostructure was synthesized by gamma-irradiation method from NiSO4 precursor. The solution was irradiated by 60Co gamma-ray source at the dose rate of 40 Gy/min for determined time. The synthesized powders are characterized by means of X-ray powder diffraction (XRD), Energy-di...

متن کامل

Investigation of Nickle nanoclusters properties by density functional theory

Clusters play important role for understanding and transferring microscopic to macroscopic properties.Geometric and electron properties of Small nickel clusters up to the tetramer has been investigated by Density Functional Theory (DFT). Raising the number of nickel clusters atoms were indicated decreasing the average equilibrium (Ni-Ni) distance of atoms and also the binding energy of per atom...

متن کامل

Reversible Photoisomerization of Spiropyran on the Surfaces of Au25 Nanoclusters.

Au25 nanoclusters functionalized with a spiropyran molecular switch are synthesized via a ligand-exchange reaction at low temperature. The resulting nanoclusters are characterized by optical and NMR spectroscopies as well as by mass spectrometry. Spiropyran bound to nanoclusters isomerizes in a reversible fashion when exposed to UV and visible light, and its properties are similar to those of f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014